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ABSTRACT

-We consider estimation of the long-term average power output from a wind
turbine g. ierator at a site for which little data on wind speeds is available.

Long-term records of wind speeds at the twelve synoptic meteorological stations
are also used. Inference is based on a simple and parsimonious approximating
model which accounts for the main features of wind speeds in Ireland, namely

seasonal effects, spatial correlation, short-memory temporal autocorrelation, and
long-memory temporal dependence. It synthesises deseasonalisation, kriging,
ARMA modelling, and fractional differencing in a natural way. A simple kriging

estimator performs well as a point estimator, and good interval estimators result
from the model. The resulting procedure is easy to apply in practice.

Keywords: Deseasonalisation; Fractional differencing; Kriging; Optimal interpolation;

Persistence.

1. INTRODUCTION

- 'The Irish government has, in recent years, been considering the possibility of using wind

energy to meet a significant portion of Ireland's energy needs. This paper describes a project
*11

aimed at developing methods for the evaluation of Ireland's wind power resource.

This resource may be exploited at various scales. Large scale wind farms, involving some

-" hundreds of wind turbines, could supply the electricity grid with a significant proportion of its
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energy needs; one study envisaged up to 25% (Gibbons et al., 1979). Isolated communities,

such as on the islands, where electricity costs are particularly high, could be supplied by medium

scale turbines. One interesting small scale project is the heating of greenhouses, where the

demand for energy correlates highly with its availability. There are many difficult and different

problems in this broad task; here we concentrate on the quantification of the resource at a

specific site.

Data on the availability of wind energy in Ireland are sparse, because few data exist at

locations of interest for wind energy purposes. Only at twelve synoptic meteorological stations

have detailed and reliable records of wind speeds and directions been compiled over a long '.

period; see Figure 1. These data are described in section 2. Data at a potential site will typically

be few or non-existent, although there may be some broad guidance available from an

experienced evaluation of the local topography. The kinetic energy in Lhe wind, and the power

available to any specific turbine, is a non-linear function of wind speed, and it is therefore

necessary to estimate the full distribution of wind speeds, and not merely an average.

Before starting to operate a wind turbine or wind farm at a potential site, it would be usual

to record wind data there for a short period of several weeks or months. As we shall see in

section 3, a simple estimator based solely on such a short run of data performs poorly, and a

better estimator results by "adjusting" such an estimator, using the long-term records at the

synoptic stations. This estimator is calculated by first deseasonalising the data, and then

applying a general least squares approach. Given our spatial context, this has close links with

"kriging". However, the standard errors yielded by standard assumptions of temporal

independence, or even short-memory temporal dependence, are much too small, due mainly to

the presence of temporal persistence, namely non-negligeable dependence between observations 5

a long time span apart. .5
'S...

We therefore develop alternative interval estimators based on a simple and parsimonious

approximating model which accounts for the main features of the data, namely seasonality,

spatial correlation, short-memory temporal dependence, and temporal persistence; see section 4. .5
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The resulting standard errors are quite accurate. The model also yields estimates of the full

distribution of wind bpeeds, and hence of the available kinetic energy in the wind; see section 5.

2. THE DATA .,

The data are hourly wind speeds in knots (1 knot = 0.5148 metres per second), and

directions at each of twelve synoptic meteorological stations during the period 1961-1978; see

Figure 1. Here we present the main features of the data that turned out to be important for our

purpose; further description can be found in Haslett and Kelledy (1979) and Raftery et al.

(1982).

At all levels of temporal aggregation, standard deviations are correlated with means. Also,

marginal distributions are noticeably asymmetric. Standard exploratory techniques suggested

taking a square root transformation, and this does, indeed, stabilise the variance over both

stations and time periods, and make the marginal distributions approximately normal. This same

transformation has been found to be helpful in similar contexts by other workers; see Brown et

al. (1984) and Carlin and Haslett (1982).

Another problem is the choice of level of temporal aggregation. For example, Brown et al.

(1984) work with hourly data, Barros and Estevans (1983) use weekly averages, and Balling and

Cervany (1984) rely on monthly aggregates. Our procedure for estimating power at the new site

is in two stages: first, estimating the distribution of wind speeds at the new site, which is easier

for more aggregated data, and, second, translating this into available kinetic energy, which is

easier for less aggregated data. The extent to which speeds at one station can be predicted from

contemporaneous speeds at others increases quite rapidly up to a level of aggregation of about

one day, and thereafter more slowly. Guided by these observations, we have based our analyses

on the square roots of daily mean wind speeds.

Wind speeds vary with time of year, although the seasonal effect is not very strong,
accounting for about one-quarter of the total variance. We estimated the seasonal effect by

calculating the average of the square roots of the daily means over all years and stations for each

'-A..
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Fig. 2. Seasonal effects. The dots show the average of the square root of the daily means over
all stations and years, for each day of the year. The solid line is the estimated seasonal
effect.
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day of the year, and then regressing the results on a set of annual harmonics; see Figure 2.

Subtraction of the estimated seasonal effect from the square roots of the daily means then yields

deseasonalised data, hereafter referred to as velocity measures.

Contemporaneous velocity measures at different stations are highly correlated, and the .

correlations are clearly related to the distances between stations; see Figure 3. The correlations

involving one station - Rosslare - are much lower than the others. This may be because its

position in the extreme south-east of the country makes it subject to meteorological influences

which do not affect the other stations. We have omitted Rosslare from our calculations. The

spatial correlation pattern revealed by Figure 3 changes little with time of year.

The data exhibit some short-memory temporal autocorrelation; see Figure 4. There are

striking similarities between its pattern and extent at the different stations.

3. A KRIGING ESTIMATOR %
S

Suppose we have data on wind velocity measures at m places, labelled 1, ... m. One of

these, the new site, is labelled k, and there we have a short run of data collected on n ,_

consecutive days, t =t o .... , to+n -1. At the other places, the synoptic meteorological stations,

we have long runs of data collected on N consecutive days, t = 1, ... N. Here n <<N, and

1 <to<t0+n-l .N. Let Xt=(Xlt, . . . ,XUt)T , where X# is the velocity measure at place i on

day t. Then, as we shall see in section 5, knowledge of the mean and variance of Xkt can be
S

translated into quite precise knowledge of the average available kinetic energy in the wind at the

new site. This section and the next one are mainly concerned with estimating the mean and

variance of X1.

Let gti=E[Xi (i=....m), and Xit,n=n -1 ZXi1+s. A simple estimator of 9tk is
S=1

9k =Xk,t0.f, the average of the observed velocity measures at place k. A simple estimator of the S

variance of Pk is

k,ton,n in { - I  (Xkt,+s -I --9k)2/(n -1) (3.1)
S=1

%
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gk takes no account of the long runs of data at other places, and we now develop an

estimator which does exploit these. The analyses in section 2 indicate that the correlation

between wind speeds at different places is strongly related to the distance between them, and .p

suggest that the covariance structure can be reasonably well approximated by the relations

Cov(Xi ,Xjt) = i rij (3.2)

where

or 1 if i =j '

riJ =O exp (-dij) if i (3.3)

In (3.3), 0 A . 1, P3 0, and dij is the distance (in kilometres) between places i and j. If a< I

there is a "nugget effect" due to measurement error and very small-scale effects (Journel and

Huijbregts, 1978).

If one assumes that (3.2) and (3.3) hold, and ignore temporal dependence, the general least

squares estimator of ptt is

gk, = aT (Xt, %n-Hn(k ') )ak (3.4)

In (3.4), A =R - , where A is the mxm matrix with elements (aij), and R is the mxm matrix

witi' 1ements (rij) defined in (3.3). Also, ak=(al, .... 1 ak, k); XtO,n=(X 1 ton . Xj,to,n)T;

( , m)T, where

= {N= 1,,N (i Az)
X (i =k )

and H (k) is the m xm matrix with elements

[1 if i=j and i k
hU. )= if not

(3.4) was obtained by first approximating the spatial covariance structure by a smooth,

isotropic, function of distance, and then using the resulting general least squares estimator. This

approach underlies many "kriging" procedures (Journel and Hiujbregts, 1978; Ripley, 1981), and
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we therefore call p.k a kriging estimator. It has also been used in meteorological applications,

where it is known as "optimal" or "objective interpolation" (Gandin, 1965; Creutin and Obled,

1982; Tabios and Salas, 1985; Thiebaux and Peddar, 1986). The results are fairly robust to some

misspecification of the spatial covariance structure (Cressie, 1985; Brooker, 1986).

It is readily verified that, if (3.2) holds, then Pk is unbiased. If we assume that the

observations are temporally uncorrelated, then

Var(lgk) = Y9 aTRak / a2 n (3.5)

If one assumes, in addition, that a[Xt is normally distributed, which does seem to be

approximately the case for our data, then Pk is also normally distributed, and interval estimators

result from (3.5). Even if a[Xt is not normally distributed, g-k will still be approximately 'p

normally distributed in large samples, under regularity conditions.

In order to assess the performance of 1-k as compared with the simpler estimator gk, and

also to assess the variance estimators given by (3.1) and (3.4), we carried out an approximate

cross-validation exercise, the results of which are shown in Table 1. For each of several values

of n we calculated 9k and 1k for each disjoint data run of length n at each station in turn, and

compared these with 4kt considered to be the "true" value for this purpose. ax, P3, and a2 were

estimated once from the entire data set, as described in section 4; this provides a good

approximation to a complete recomputation on the deletion of each station in turn.

Pk performs better than Pk, particularly for short data runs. For example, for runs of length

n =20 days, using -k rather than k reduces the empirical mean squared error by about 68%. It

appears, empirically, that to achieve the same precision, the simpler estimator would require

about six times as much data. The gain in precision decreases as n increases. The empirical

distributions of 9k and 4A: did not deviate appreciably from normality.

The estimated variances of P obtained from (3.1), and those of 9k obtained from (3.5) are,

however, clearly quite inaccurate. Not only are they much too small for all values of n, but the

extent to which they fall below the empirical variances increases with n. When n = 320, they are

Z# Z#z, "- 2 ." ','Z'.' ",.'.Z,'-' ..'. .'.'¢'¢
.
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TABLE 1
Empirical and theoretical mean squared errors

(multiplied by 10,000) of Itk and 9,.

MSE (g'k) MSE(.k)

n Empirical From (3.1) Empirical From (3.5) From (4.10)

20 1156 383 370 129 396
40 710 162 308 64 311
80 493 83 255 32 245

160 302 40 208 16 193
320 197 20 159 8 152

too small by factors of about 10 and 20, respectively. This indicates that simply taking into

account the short-memory temporal autocorrelation suggested by Figure 4 would not, by itself,

be sufficient to make the standard errors accurate, as it would, effectively, just multiply all the

standard errors by a constant.

This suggests that the data exhibit persistence, or long-memory temporal dependence, one

of whose manifestations is that the sampling variance of the sample mean decreases more

slowly, asymptotically, than the usual rate for short-memory processes, 0 (n-) (I-cpsking, 1982,

1984b). Further evidence for persistence is provided by Figure 5, which shows, for each station,
',U

the periodogram of the residuals from a fitted AR(9) model. In Figure 5, the short-memory

temporal dependence has been largely removed, and yet there is a concentration of power at low

frequencies, which is characteristic of long-memory temporal dependence (Graf et at., 1984).

The patterns at the different stations are quite similar to each other.

Most models for long-memory temporal dependence imply an approximately linear

relationship between power and log-frequency at low frequencies. Inspection of Figure 5 reveals

that for our data, at the very lowest frequencies, power is slightly less than such models would

lead us to expect. This may be due to the fact that Figure 5 shows the periodogram from a finite

sample and not the true spectrum, rather than to inappropriateness of such models. The implied

IN"
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truncation of the autocovariance function may lead to some negative bias at the lowest

frequencies.

4. MODELLING AND INTERVAL ESTIMATION

4.1. A model

We base inference for Igk on a single model for the entire space-time process {Xt :t¢ Z}, as

follows.

Xil = gi + V-dO(B )-'O(B )r/ (4.1)

where

pt =(t ... mt)T i- MVN(0,0 2R) (4.2)

In (4.1), B is the backward shift operator such that Beit=eit_; V=(1-B);

O(B) = (1-01B - --0,,BP ); and O(B ) = (1-0 1B.... OqB q). It is assumed that 0 <d < 112 and

that the zeros of O(B ) and 8(B ) lie outside the unit circle. V-d is defined by the binomial series

expansion of (1-B )-d.

In (4.1), temporal persistence is modelled by the use of fractional differencing (Granger and

Joyeux, 1980; Hosking, 1981). (4.1) implies that the second-order moment structure of the p

space-time process is isotropic and stationary in both space and time. This is true approximately,

but not exactly; assuming it enables the resulting model to be applied easily at a new site for

which little other information about spatial and temporal covariances is available.

4.2. Identification and preliminary estimation

We used the following procedure to identify the orders of the polynomials 1(B) and 8(B),

and to obtain initial estimates of the parameters. This is important, because the more exact

estimation method described in section 4.3 is feasible only if reasonable starting values are

----
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available. The full data set, consisting of N = 6574 observations at each of m = 11 stations, was

used.

1. Form preliminary estimates of a and 0 by regressing log{Corr(X ,X , ,) on log(dij), using

the fact that Corr(Xit ,Xjl) = Corr(e.. ,ej,) for (4.1).

2. Form m approximately spatially independent series {Y t = 1....N } (i = 1 ... ,

where Yt=CX, and Yt=(Yt, . . . ,Y.,) T . Here C is a lower triangular mxin matrix such

that CRCTrI=; C is constructed by the Gram-Schmidt orthogonalisation procedure.

3. Find an autoregressive filter which accounts for most of the short-memory dependence in

the {Yt} series, and filter each of the m series {Y :t = 1, ... ,N} with it. This yields a

data set which is free, to a good approximation, of both spatial and short-memory temporal
p

dependence, and whose main feature is persistence. The filter we used was of crder nine.

4. Form means of n consecutive values from the output of step 3, for several subsets of the

data, and several values of n. For each value of n, calculate the sampling /ariance of these

sample means. Then, regress the logarithm of the sampling variance on log n, and take

one-half of one minus the estimated slope as an initial estimate of d, d, say. This is

motivated by the asymptotic results of Hosking (1982, 1984b).

5. Form the m series V Ya: t = 1, .... N }. A fast and accurate way of implementing this

filter is described in section 4.3.

6. Identify a common ARMA (p,q) model for the 'n series {VdYt = . N}, and

estimate it, yielding initial estimates of O(B) and 0(B). We identified an AR(2) model for

our data.

4.3. Maximum likelihood estimation

Let X t ={Xt ..1 . Xt} and X,={Xi .... ,Xa}. Then the likelihood can be calculated

exactly by noting that, conditionally on X t -1 , X, has a multivariate normal disuribut'on, where

E[Xit IX" -1] = E[Xi IXi-l], Var[Xi IX1-i]= Var[X IXi!- ', and Corr(XtX, IX'-') =

.5.,

d~ ~ ~ S-.. ~ *. S... S. %S.\W~U*~ ~5...' . ~I(% ~ . ~ %. Sd.
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a exp(-,dj). The one-dimensional conditional means, E[Xj X:-i], and variances,

Var[XjtIX!-1], may be calculated by inserting the autocorrelations for the fractionally

differenced ARIMA (p,d,q) process (Hosking, 1981) into the Durbin-Levinson recursion

(Ramsey, 1974).

Maximum likelihood estimators can then be found by numerically maximising the

likelihood. This is, however, a demanding task, computationally. For example, a single

evaluation of the likelihood takes about three hours of CPU time on a VAX 11/780, and finding

the maximum likelihood estimator would take at least 45 hours, even with good starting values.

Carlin et al. (1985) and Carlin (1987) did obtain estimates for long-memory time series models

by numerically maximizing the exact likelihood, which seems to have been practicable because

they were working with short, one-dimensional, series of lengths less than 220.

However, a fast and accurate approximation can be found, as follows. First, we note that,

to an excellent approximation, the conditional means and variances may be found using only the

partial autocorrelations for the fractionally differenced ARLMA (0,d,0) process, and not those

for the full ARIMA (p ,d,q) process, which are much more complicated (Hosking, 1981). Then -*

we can find the maximum likelihood estimators of gi and y2 analytically, and find a concentrated

likelihood which is a function only of a, j3, d, O(B), and O(B). Finally, we approximate the

partial linear regression coefficients of the ARIMA (0,d,0) process, the calculation of which

dominates the CPU requirements. The resulting approximation reduces the required CPU time

by a factor of about 70 for our data, and appears to be quite accurate.

We now describe the approximation used in more detail. We note, first, that to an excellent

approximation,

E [Xil IXi'-'] =uit +wt gi (4.3)

and

t-I

Var[Xi t IXit-'] = aK f (1--4 ) = v(4.4)
j=1

,,''"- -"- -'" ".'.-' ". " ".-V." "'.- "." ..- '.".. -' "." " . ". ". "." . " "" . "- ." " - ."-' -" " -" " . -"." " ."-" - . "-"".' ." "9.
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In (4.3) and (4.4)
t-1

uit = (O0B - j.,Xi~t-j (4.5) .
j =1

i-II

wt = 1-((1)0(1) -  4.6)
j =1

where the Oj are the partial linear regression coefficients for the ARIMA (O,d,O) process, given

explicitly by Hosking (1981), and ic is the ratio of the innovations variance to the process

variance for the ARMA (p ,q) process with parameters O(B) and O(B), as defined by equation

(3.4.4) of Box and Jenkins (1976).

Given values of ax, 03, d, O(B), and 0(B), the maximum likelihood estimators of t and 0.

are then available analytically as

N N
=. -U w( 1- 1 )v1 -Ji

;' 2 = (Nm)-I 1 (X-u t -wtp.) T A (Xt -ut-wt .) v -t

t=1

where ut =(u it . u,,.U)T and =($',...,,m ) r . The concentrated log-likelihood is then

I (o43,d ,0(B ),O(B)) = constant - '/2Nm log(cy2 ) - 12N I R (4.7)

and maximum likelihood estimators can be found by maximising this numerically. It is

computationally efficient to maximise I as a function of the other variables conditionally on d,

for each trial value of d.

The recursive calculation of the Oj and the evaluation of (4.3) dominate the CPU time

requirements. We approximate these, noting that by Hosking (1981), 40,--ni, and

jtO(j - 1) as t---c, where the nj are the n-weights of the ARIMA (O,d,O) process, as

,* defined by Box and Jenkins (1976). Our approximation consists of taking these asymptotic

relationships to hold exactly for j >M, where M is some integer, and then taking the nj to be

constant, at their approximate average value, for M <j t - 1. This yields

*/ V ' *%~... v
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t-I M t-I "a

Ot, Xi.1_-j = jX _+ It ltjXt
j=l j=1 j=M+1

M
tjXi ,+M 7Md- + { 1-(M/j)d}X+1-1-M (4.8)

j=1 
-

(4.8) is then substituted into (4.5), and a similar approximation is used in (4.6). This provides a

good approximation to the likelihood function as a whole, and so opens the possibility of

Bayesian, as well as likelihood, inference for fractionally differenced models. Numerical

experimentation indicated that choosing M=100 gives good results over a wide range of values

of d and N. For our application, the approximation reduced CPU time by a factor of about 70, so

that the CPU time required for a single evaluation of the likelihood went down from three hours

to about 2 h minutes. I'

Hosking (1984a) proposed an approximation which is similar in spirit to (4.8). However,

(4.8) seems to be somewhat faster for the very long series we are dealing with here (N=6,574),

and seems also to avoid the starting value problem for the long-memory filter. Spectral

approximations to the maximum likelihood estimator in the one-dimensional case have been

proposed by Fox and Taqqu (1986), Beran (1986), and Geweke and Hudak-Porter (1983); these

have not, however, been generalised to the multivariate, or space-time, context. Short-memory

autoregressive approximations have been suggested by Granger and Joyeux (1980) and Li and

McLeod (1986), but we felt it important to retain the long-memory property in the

approximation used.

Neither the finite sample, nor the asymptotic distribution of the maximum likelihood

estimator for models such as (4.1) appears to be known. However, Yajima (1985) has shown

that the maximum likelihood estimator for a one-dimensional specialisation of (4.1), namely the

fractionally differenced ARIMA (0,d,0) process with known mean, has the usual asymptotic

normal distribution, while a similar result for the purely spatial specialisation of (4.1) follows

from Mardia and Marshall (1984). We conjecture that the usual result does hold for (4.1), and

could be proved by combining the arguments used in these two papers.
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The approximate maximum likelihood estimators, with their approximate standard errors in

parentheses, are &=.968(.0013), 0 = .00134(.000025). d=.328(.0029), 41=.010(.0123),

j = -. 063 (.0123), and o = .477. Thus, the long-memory effect is found to be both large and

significant, and there is a fairly small, but significant, nugget effect, indicated by a being

significantly less than one.

4.4. Model checking

Suppose e, =C (Xt -u,-wt g) vj'A (e It'', e,, )T Then, conditionally on the estimated

model, the ei1 should be independent and identically distributed normal random variables with
mean zero, and variance c2. The quantile-quantile plots, autocorrelations, and cumulative

periodograms of the residuals are in good agreement with this. There is, however, a small

number of clearly non-zero cross-correlations at lag zero. These are all less than 0.2 in absolute

value, and reflect the fact that, as can be seen from Figure 3, the assumed spatial correlation

function (3.3) is not exact; this seems unavoidable. The most important check on the model for

our purposes is the quality of the interval estimates it yields; this is investigated in section 4.5.

In analysing another, one-dimensional, set of wind speed data, Lawrance and Lewis (1985)

concluded, using techniques based on third-order moments, that their data exhibited non-

linearity. Similar analyses, and also calculations based on fourth-order moments (Granger and

Andersen, 1978), failed to reveal any such non-linearities in our data.

4.5. Interval estimation at a new site

Let us now consider the situation of section 3, where we have a short run of data at a new

site k, on the basis of which we wish to estimate gt. As we saw, the estimator .Lk defined by

(3.4) performs well as a point estimator. An interval estimator now follows by noting that,

conditional on the model (4.1), gk is unbiased and normally distributed with

Var( t )= 2 aTRa In+ " (n-j)p}/n2  (4.9)
J =i

. '.@.,'. ,'..'£€';,'_...' .','.%-,_.'_,¢,_ ,,% '.€- , , '. -, . .,,' ¢.'.- ,¢.,C,; i. ,C ¢.¢. & 4; ,. . '-¢ ,. @: ,r. .., ¢ -@ ,,& @,. .1"
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where pj are the autocorrelations for the fractionally differenced ARIMA (p ,d,q) process.

However, (4.9) is inconvenient because the p are rather complex. A convenient approximation F

to (4.9) is

Var(g.Ik) =2xf (0) aTRak In+ X (n-jlp d)j n 2  (4.10)
J 4l I,-

j=.

where the p () are the autocorrelations of an ARIMA (0,d,O) process given explicitly by

Hosking (1981), and f (0) is the spectrum at zero of the estimated ARMA (p,q) model with

parameters 4(B ) and 6(B ), and innovations variance y2 (Fuller, 1976, Theorem 6.1.2).

To assess the accuracy of standard errors based on (4.10), we extended the cross-validation

exercise reported in section 3 to include them; see Table 1. The theoretical standard errors are

quite accurate, and, in particular, they capture the non-standard rate of decline of the mean

squared error of the empirical errors quite well.

It would, of course, be possible to use as a point estimator the exact maximum likelihood

estimator of 11k based on the model (4.1), rather than the kriging estimator pk .However, this is a

much more complicated solution, and some numerical work indicated that there is little to be

gained from adopting it. This is not surprising, given the result of Adenstedt (1974) and Beran

and Kuensch (1985), that the loss of efficiency incurred by using the sample mean is small for

one-dimensional long-memory processes.

5. ESTIMATING WIND POWER

The power P (in W/m) in a wind with instantaneous speed V (in knots) is due to its

kinetic energy, and is

P = pV 3  (5.1)

where p depends on the density of air, and is, in these units, p .167 (Golding, 1955). Not all of

this energy is available to a given turbine. Indeed, there is a theoretical upper bound of 0.593

(the Betz coefficient) to the proportion of this energy which may be extracted. The amount
%:
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which is available to a particular turbine is a complicated function of V, the parameters of which

are specific to that turbine. A realistic figure for a modern efficient turbine is on the order of

0.35. For maximum generality, therefore, we concentrate here on estimation of the long-run

average of P at a new site. Brown et al. (1984) give an example of the computation of

windpower from a specific turbine.

By (5.1), the average power in the wind at place i on day t is itpVa?, where Vi is the

average cubed wind speed at place i on day t. However, we have formulated our model in terms

of the velocity measures Xj,. In order to deduce an empirical relation between V 3 and X we

constructed a log-log plot of Vi3 against Zil =Xit+st, where s, is the seasonal effect for day t.

This is shown in Figure 6, and is based on 180 days sampled randomly from each of the synoptic

meteorological stations.

Figure 6 suggests the approximate relation

E[V.'IZt] =yZi' (5.2)

with parameters which are approximately constant across place and time of year. We have taken
=5, which accounts for almost as much of the variation (97%) as the best fitting line (for which

5=4.6), and yields the very simple result

O'ka

EW~ -yE v[z.i

The estimated value of y is 5.06.

To obtain an estimate, 1k, for the average power at place k, we replace 41k by 92k in (5.3),

and average over all values of t for a year. This yields

365
'k = '/2pY-'-t= Ot {(Ik'St) 5 " lO(lik+St)k 2 + 15(9k+S)ai} (5.4)

where co1 is 0.25 for 29 February, and 1.0 for all other days. Upper and lower confidence bounds
"

for Pk may be obtained by replacing gAk in (5.4) by the upper and lower confidence bounds for ".

Or,. i " d.C.tIl t i t "
el5
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gtk derived in section 4. " "

In Table 2, we show the results of implementing this procedure for several examples b

involving each of the synoptic stations, a collection of starting values ranging over years and

time of year, and several values of n. The "true" values are obtained from (5.4) with -k
L.

replaced by t..

TABLE 2
Estimated kinetic energy (in ki /m 2) based on short

data runs at the synoptic stations. The point estimates and
confidence intervals are based on (5.4), (3.4), and (4.10).

95% confidence

limits

Starting Point "True"
Site date n estimate value lower upper

Malin Head I January, 1961 20 .37 .57 .19 .65
Roche's Point 5 February, 1962 20 .38 .35 .23 .62
Valencia 12 March, 1963 20 .21 .25 .11 .38
Kilkenny 15 April, 1964 40 .10 .09 .06 .16

Shannon 20 May, 1965 40 .24 .24 .16 .35
Birr 24 June, 1966 40 .10 .11 .06 .14
Dublin 29 July, 1967 80 .21 .21 .14 .31
Claremorris 1 September, 1968 80 18 .15 .12 .26

Mullingar 6 October, 1969 160 .17 .16 .13 .23
Clones 29 January, 1971 160 .14 .16 .10 .20
Belmullet 8 April, 1973 320 .37 .39 .27 .51 -,-

Malin Head 22 February, 1974 320 .70 .57 .49 .96

These results reflect the satisfactory performance of the interval estimator of pk. They also ,

show how much harder it is to estimate mean kinetic energy than mean speed. For example, in

the example of the first line of Table 2, it is possible to estimate gk to within about ± 13% at a

95% confidence level after 20 days, but mean kinetic energy can be estimated only to within a

factor of about 2. The last line of Table 2 illustrates the fact that even when n is greatly

%



-17-

increased, the uncertainty remains considerable.

To bring these results into more concrete form, we note that an average power of 544

22Wim (as at Malin Head) corresponds to 4765 kWh/m 2lannum of energy. Thus, for a

horizontal axis turbine with a 5m blade, and a cross-section therefore of 79 m 2 , and an average

efficiency of 0.35, this corresponds to an energy production of about 131 MWh Iannwn on

average. For comparison Irish electricity production in 1985-86 was about 10 MWh /annum r

(Electricity Supply Board, 1986).

6. DISCUSSION -

We have proposed a procedure for estimating wind power at a new site which gives

reasonable answers and is easy to apply in practice. Inference is based on a simple and

parsimonious approximating model which synthesises deseasonalisation, kriging, ARMA

modelling, and fractional differencing in a natural way.

We have focussed here on the evaluation of the average power output to be expected in the

long term from a wind turbine at a given site. We have ignored many questions however. For

example, the basic data pertain to a standard height of 10 metres; the question of height

extrapolation is discussed, with references, in Brown et al. (1984). Furthermore, other factors, -

such as variability, influence the value of the wind power resource to, for example, an electricity

utility. Short term predictions of power available and required are of considerable importance for

the control of an electricity grid. Such questions need model predictions at short time scales, on

the order of one hour or less, and are not provided by this model; see Brown et al. (1984) and

Lou and Corotis (1985). The long term variability of the resource is another key issue in

discussions of questions such as the "capacity credit" of a proposed wind farm; see Haslett and

Diesendorf (1981) and Carlin and Haslett (1982). The model developed in section 4 provides

some basis for answering this, and other, questions about the resource. For example, it could be

used for medium-term prediction and control.

%|
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Our model is based on the assumption that the second-order moment structure of the

space-time process is constant over Ireland (except the south-east comer). This assumption holds

approximately, but not exactly, and it plays the important role of providing an estimate of the

second-order properties at a new site for which there is not enough data to estimate them

independently. Thus, the error bounds above must be somewhat optimistic, being conditional on

the estimated values of all the parameters of the model, other than the mean, and on their being

site independent. A natural way to relax it would be to cast the problem in a parametric

empirical Bayes framework (Morris, 1983). This would be much more complicated, and some

numerical work indicated that, in our case, neither exact knowledge of the second-order moment

structure, nor the imposition of a joint probability distribution on the i would greatly improve

precision over our method. However, it may well be worth investigating for other problems of

this type.

We have not made use of the available wind direction information. Wind turbines are able

to turn quite rapidly so as to be optimally placed for electricity generation with respect to the

current wind direction. Thus information on wind directions would be of use only indirectly in

assessing the resource, if it enabled us to estimate the distribution of wind speeds with more

precision; our calculations suggest that it would not. For example, we decomposed each wind

speed into components parallel and perpendicular to the prevailing wind direction, an approach

advocated by McWilliams and Sprevak (1985). The strong relationship between spatial

correlation and distance shown in Figure 3, which is crucial to our method, disappeared. Even

assuming exact knowledge of all spatial correlations did not lead to appreciable improvement in

the estimator of ltk when wind speeds were decomposed into components.

One refinement which may well lead to increased precision is the incorporation of prior .

expert opinion about N&, usually that of a meteorologist. This can be done using Bayes' theorem.

A simple, approximate, Bayesian solution follows by noting that posterior uncertainty about l t _

is much greater than that about any of the other parameters, and approximating the likelihood for

l.tk by a normal density, obtained by assuming the other parameters to be known exactly. It can

% I.-" I''''' " " ,"• "'""o"/ / € , - --"""" ""-. .' , """ "" "" " ,"" " ' ""' ' -"" -" ' " d"" ""
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also be done, approximately, in a non-Bayesian way by regarding the prior mean as another

estimator, and using the prior variance to combine the two estimators in the usual way. If the

prior distribution is normal, these two approaches should give very nearly the same answer.

A variety of alternative approaches could be taken. For example, Deutsch and Pfeiffer

(1981) outline a different approach to space-time modelling which introduces spatial structure

by ordering the neighbours of each site, rather than by modelling the spatial covariance

structure. Their method seems less applicable to the present problem. Another approach is

suggested by the meteorological plausibility of considering wind speeds to be governed by

regimes which succeed one another according to a renewal process.

The evaluation of wind power has been considered for other countries, including Argentina

(Barros and Estevans, 1983), New Zealand (Cherry, 1980), Denmark, the U.K. (Musgrove, 1987;

Halliday, 1984), the USA (Pennell et al., 1980; Justus et al., 1976), and Spain (Adell et al.,

1987). Many of these make use of meteorological models of the air-flow away from the Earth's

surface. However, such studies have, typically, given little explicit indication of the precision of

their estimates. Exceptions include Corotis (1977) and Barros and Estevans (1983).

There have been few studies of the spatial co-variability of wind speeds in this context.
L

Exceptions include Balling (1984), Barros and Estevans (1983), Corotis et al. (1977) and Carlin

and Haslett (1982); these have, however, adopted very simple descriptions only. The only

detailed approach known to us of adjusting short series of wind speeds, by reference to longer

series, is that of Barros and Estevans (1983), but this ignored the temporal autocorrelations. Such

adjustments are well known in the hydrology literature as "augmentation" procedures; see Vogel

and Stedinger (1985) for a recent review. These do not, however, typically model the

correlations spatially, and usually ignore even the short term temporal auto-correlation.
.,

One consequence of the long-memory property is that the gain in precision from extending
records in time at one site rapidly becomes small. However, the availability of even small

amounts of data at nearby places increases precision considerably, due to the strong spatial

correlation. For the purpose of estimating the wind resource, it therefore seems worthwhile
o .
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collecting windspeed data at a much denser grid of locations, perhaps using simple

anemometers. This seems likely to be a more efficient use of resources than recording wind

Nspeeds for an extended period at a small number of additional locations. Of course, there are

parameters of interest other than long run average power, such as extrema, concerning which we

can make no such recommendations.

ACKNOWLEDGEMENTS

Some of this work was part of a project carried out by the Statistics and Operational

Research Laboratory (SORL) at Trinity College, Dublin, for the Irish Meteorological Service,

with funding from the Irish Department of Energy. The Director of SORL is acknowledged for

permission to publish. A.E. Raftery's research was partially supported by ONR contracts

N00014-84-C-0169 and N00014-81-K-0095.

We are grateful to Liam Burke, John Carlin, Sir David Cox, A.P. Dempster, Olivier

Dubrule, Con Gilman, Eamonn Kinsella, Doug Martin, Don Percival, Brian Ripley, Ian

Saunders, Bernard Silverman, and Richard Smith for helpful comments and discussions, and to

Elaine McColl, Barry Clancy, and Michael Newton for research assistance.

REFERENCES

Adell, L., Zubiar, R., Martin, F., Ferrando, F., Moreno, P., Varona, L. and Pantoja, A. (1987)
Development of a methodology for the estimation of wind energy resources in relatively
large areas: Application to the eastern and central parts of Spain. Solar Energy, 38, 281-
295.

Adenstedt, R.K. (1974) On large-sample estimation for the mean of a stationary random
sequence. Ann. Statist. 2, 1095-1107.

Balling, R.C. and Cervany, R.S. (1984) Analysis of time and space variations in long term
monthly averaged wind speeds in the United States. Wind Engineering, 8, 1-8.

Barros, V.R. and Estevans, E.A. (1983) On the evaluation of wind power from short wind
records. J. Climate Appl. Meteorol., 22, 1116-23.

Beran, J. (1986) Estimation, testing, and prediction for self-similar and related processes.
Unpublished doctoral dissertation, ETH, Zurich.

Beran, J. and Kuensch, H. (1985) Location estimators for processes with long range dependence.
Unpublished Res. Rpt. no. 40, Sem. fuer Statist., ETH, Zurich.

J'I 0



7 T7 V, V,-T 7

-21- .1
Box, G.E.P. and Jenkins, G.M. (1976) Time Series Analysis, Forecasting and Control, Revised

edition. San Francisco: Holden-Da,.

Brooker, P.I. (1986) A parametric study of robustness of kriging variance as a function of range
and relative nugget effect for a spherical variogram. Math. Geol., 18, 477-488. ?

Brown, B.G., Katz, R.W. and Murphy, A.H. (1984) Time series models to simulate and forecast
wind speed and wind power. J. Climate Appl. Meteorol., 23, 1184-95. '

Carlin, J.B. (1987) Seasonal analysis of economic time series. Unpublished Ph. D. thesis,
Department of Statistics, Harvard University.

Carlin, J.B., Dempster, A.P. and Jonas, A.B. (1985) On models and methods for Bayesian time
series analysis. J. Econometrics, 30, 67-90.

Carlin, J.B. and Haslett, J. (1982) The probability distribution of wind power from a dispersed -

array of wind turbine generators. J. Appl. Meteorol., 21, 303-313.

Cherry, N.J. (1980) Wind energy resource survey methodology. J. Ind. Aerodynamics, 5, 247- 01
280. r'

11

Creutin, J.D. and Obled, C (1982) Objective analysis and mapping techniques for rainfall fields:
an objective comparison. Water Resources Research, 18, 413-415.

Cressie, N. (1985) Fitting variogram models by least squares. Math. Geol., 17, 563-586. ,

Corotis, R.B., Sigl, A.B. and Cohen, M. (1977) Variance analysis of wind characteristics for -

energy conversion. J. Appl. Meteorol., 16, 1149-57.

Deutsch, S.J. and Pfeiffer, P.E. (1981) Space-time ARMA modeling with contemporaneously

correlated innovations. Technometrics, 23, 401-409.

Electricity Supply Board (1986) 59th Annual Report. Dublin: Electricity Supply Board.
4.

Fox, R. and Taqqu, M.S. (1986) Large-sample properties of parameter estimates for strongly

dependent stationary Gaussian time series. Ann. Statist., 14, 517-532.
tFuller, W.A. (1976) Introduction to Statistical Time Series. New York: Wiley. %

Gandin, L.S. (1965) Objective Analysis by Least Squares, Israel Program for Scientific %
Translations.

Geweke, J. and Hudak-Porter, S. (1983) The estimation and application of long memory time
series models. J. Time Series Anal., 4, 221-238.

Gibbons, T.G., Haslett, J, Kelledy, E. and O'Rathaille, M. (1979) The Potential Contribution of
Wind Power to the Irish Electricity Grid, SORL Report 7902, Statistics and Operations
Research Laboratory, Trinity College, Dublin, Ireland.

Golding, E.W. (1976) The Generation of Electricity by Wind Power. London: E.F. Spon Ltd.

Graf, H., Hampel, F.R. and Tacier, J.-D. (1984) The problem of unsuspected serial correlations.
In Robust and Nonlinear Time Series Analysis (J. Franke, W. Haerdle, R.D. Martin, eds.),
pp. 127-145, New York: Springer-Verlag.

Granger, C.W.J. and Andersen, A.P. (1978) An Introduction to Bilinear Time Series Models.
Goettingen: Vandenhoeck and Ruprecht.

,S.

4:: : .'...:..,..;:. ::. ::.., ::..,..:, ....,::--:-::..:- ::,.:-:;,.'. :,.:-,::.:-. 2,



-22-

Granger, C.W.J. and Joyeux, R (1980) An introduction to long-memory time series models and
fractional differencing. J. Time Series Anal., 1, 15-29.

Halliday, J.A. (1984) Analysis of wind speed data recorded at 14 widely separated UK
meteorological stations. Wind Engineering, 8, 50-73.

Haslett, J. and Diesendorf, M (1981) The capacity credit of windpower - A theoretical analysis.
Solar Energy, 26, 391-401.

Haslett, J. and Kelledy, E. (1979) The assessment of actual wind power availability in Ireland.
Energy Research, 3, 333-348.

Hosking, J.R.M. (1981) Fractional differencing. Biometrika, 68, 165-176.

Hosking, J.R.M. (1982) Some models of persistence in time series. In Time Series Analysis:
Theory and Practice 1 (O.D. Anderson, ed.), pp.641-653, Amsterdam: North-Holland.

Hosking, J.R.M. (1984a) Modeling persistence in hydrological time series using fractional
differencing. Water Resources Research, 20, 1898-1908.

Hosking, J.R.M. (1984b) Asymptotic distributions of the sample mean, autocovariances, and
autocorrelations of long-memory time series. Tech. Rpt. 2752, Math. Research Center,
Univ. of Wisconsin.

Journel, A.G. and Huijbregts, C.J. (1978) Mining Geostatistics. London: Academic Press.

Justus, C.G., Hargraves, W.R. and Yalchin, A. (1976) Nationwide assessment of potential output
from wind powered generators. J. Appl. Meteorol., 15, 673-678.

Lawrance, A.J. and Lewis, P.A.W. (1985) Modelling and residual analysis of nonlinear
autoregressive time series in exponential variables (with Discussion). J. R. Statist. Soc. B,
42, 150-161.

Li, W.K. and McLeod, A.I. (1986) Fractional time series modelling. Biometrika, 73, 217-221.

Lou, J.-J. and Corotis, R.B. (1985) Prediction of generated wind turbine power with high

frequency wind speed series. In Time Series Analysis.: Theory and Practice 7 (O.D.
Anderson, ed.), pp. 205-210, Amsterdam: North-Holland.

Mardia, K.V. and Marshall, R.V. (1984) Maximum likelihood estimation of models for residual
covariance in spatial regression. Biometrika, 71, 135-146.

McWilliams, B. and Sprevak, D. (1985) Stochastic modelling of wind speed and direction. In
Time Series Analysis: Theory and Practice 7 (O.D. Anderson, ed.), pp. 195-203,
Amsterdam: North-Holland.

Morris, C.N. (1983) Parametric empirical Bayes inference: Theory and applications (with
Discussion). J. Amer. Statist. Assoc., 78, 47-65.

Musgrove, P.J. (1987) Wind energy conversion - Recent progress and future and future
prospects. Solar and Wind Technology, 4, 37-50.

Penell, W.T., Barchet, D.L., Wendell, L.L. and Heister, T.R. (1980) Meteorological aspects of
energy resources and selecting the sites. J. Ind. Aerodynamics, 5, 223-246.

Raftery, A.E., Haslett, J. and McColl, E. (1982) Wind power: A space-time process? In Time
Series Analysis: Theory and Practice 2 (O.D. Anderson, ed.), pp. 191-202, Amsterdam:

1.p



-23-

North-Holland.

Ramsey, F.L. (1974) Characterization of the partial autocorrelation function. Ann. Statist., 2,
1296-1301.

Ripley, B.D. (1981) Spatial Statistics. New York: Wiley.

Tabios, G.Q. and Salas, J.D. (1985) A comparitive analysis of techniques for spatial
interpolation of precipitation. Water Resources Bull., 21, 365-380.

Thiebaux, H.J. and Pedder, M.A. (1986) Spatial Objective Analysis with Applications in
Atmospheric Science. London: Academic Press.

Vogel, R.M. and Stedinger, J.R. (1985) Minimum variance streamflow augmentation procedures.
Water Resources Research, 21, 715-723.

Yajima, Y. (1985) On estimation of long-memory time series models. Austral. J. Statist., 27,
303-320.

U.

-

1~

.

~,.

,~, ~ ~ . i1 ~*l~, ~U 'C ~U V . ~ /~U

.. * .- .. .. . ~'4~f~/ "/ % %I



; lr jr

%.

% e'

1 LAR

7r I


